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A B S T R A C T   

Spring phenology of temperate ecosystems is highly sensitive to climate change, generating various impacts on 
many important terrestrial surface biophysical processes. Although various prognostic models relying on envi-
ronmental variables of temperature and photoperiod have been developed for spring phenology, comprehensive 
ecosystem-scale evaluations over large landscapes and long-time periods remain lacking. Further, environmental 
variables other than temperature and photoperiod might also importantly constrain spring phenology modelling 
but remain under-investigation. To address these issues, we leveraged around 20-years datasets of environmental 
variables (from Daymet and GLDAS products) and the spring phenology metric (i.e., the greenup date) respec-
tively derived from MODIS and PhenoCams across 108 sites in the Northern and Eastern United States. We firstly 
cross-compared MODIS-derived greenup date with official PhenoCams product with high accuracy (R2 = 0.70). 
Then, we evaluated the three prognostic models (i.e., Growing Degree Date (GDD), Sequential (SEQ) and 
optimality-based (OPT)) with MODIS-derived spring phenology, assessed the model residuals and their associ-
ations with soil moisture, rainfall, and solar radiation, and revised the two photoperiod-relevant models (SEQ, 
OPT) by replacing the daylength variable with solar radiation, which was found to contribute the most to model 
residuals. We found that 1) all models demonstrated good capability in characterizing spring phenology, with 
OPT performing the best (RMSE = 8.04 ± 5.05 days), followed by SEQ (RMSE = 10.57 ± 7.77 days) and GDD 
(RMSE = 10.84 ± 8.42 days), 2) all models displayed high model residuals showing tight correlation with solar 
radiation (r = 0.45–0.75), and 3) the revised models that included solar radiation significantly performed better 
with an RMSE reduction by 22.08%. Such results are likely because solar radiation better constrains early 
growing season plant photosynthesis than photoperiod, supporting the hypothesis of spring phenology as an 
adaptive strategy to maximize photosynthetic carbon gain (approximated by solar radiation) while minimizing 
frost damage risk (captured by temperature). Collectively, our study reveals the underappreciated importance of 
solar radiation in constraining spring phenology of temperate ecosystems, and suggests ways to improve spring 
phenology modelling and other phenology-related ecological processes.   

1. Introduction 

In the temperate ecosystems, spring phenology, which has been 

advanced in response to recent global warming, is widely used as a 
diagnostic tool for Earth's surface energy balance and net ecosystem 
carbon exchange processes (Piao et al., 2019). For instance, spring 
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phenology regulates many important terrestrial surface biophysical 
processes, including land surface albedo (Lin et al., 2022; Zhang et al., 
2017), spring carbon assimilation (Lee and Ibáñez, 2021), and annual 
biomass growth (Mäkiranta et al., 2018). Furthermore, spring 
phenology not only affects many phenology-associated biotic in-
teractions, such as interspecies competition and interactions with other 
organisms (Chmura et al., 2019), but also the climate feedbacks medi-
ated by vegetation, such as earlier soil water depletion and subsequent 
increase in summer drought risks (Lian et al., 2020). Despite its 
important role in many ecological and earth surface processes, accurate 
mechanistic understanding and modelling of what drives the spring 
phenology variability over large vegetated ecosystems and long-time 
periods remain incomplete, resulting in large uncertainty in projecting 
future climate change impacts on spring phenology and other 
phenology-related ecological processes (Caparros-Santiago et al., 2021). 

For a long time, spring phenology (indicated by the stages of leaf 
development) has been mechanistically connected with several key 
phenophases, such as endodormancy (dormancy because of physiolog-
ical growth arresting), ecodormancy (dormancy due to unfavourable 
environmental conditions) (Lundell et al., 2020), and the active growth 
period (Savage and Chuine, 2021; Singh et al., 2017). Many studies 
suggest that various environmental factors, such as temperature and 
photoperiod, can affect the occurrence and development of these phe-
nophases. Specifically, the favourable forcing temperature together with 
longer photoperiod in the active growth period accelerates the devel-
opment rate of buds (Piao et al., 2019; Viherä-Aarnio et al., 2014). 
However, growth ceases when chilling begins to accumulate, and the 
photoperiod becomes shorter in autumn. These unsupportive environ-
mental conditions ultimately cause leaf fall, which marks the start of the 
endodormancy period (Schwartz and Hanes, 2010; Tang et al., 2016). 
After enduring the chilling effect and meeting the forcing requirement, 
perceptible changes in ambient environmental conditions begin to 
shape, enlarge, and open the buds in the ecodormancy period (Chuine 
et al., 2016; Fernandez et al., 2022). Accompanying these explorations 
on the proximate environmental cues on spring phenology regulation, 
many quantitative tools, such as the prognostic models of spring 
phenology that consider various phenophases and include forcing, 
chilling and photoperiod as model inputs, have also been developed 
(Basler, 2016; Shen et al., 2022; Wang et al., 2022). Depending on key 
phenophases and environmental factors being considered, these prog-
nostic models normally include temperature-dependent models, such as 
Growing Degree Days (GDD) (De Réaumur, 1735; Dong et al., 2019; 
Zhou and Wang, 2018), endodormancy and ecodormancy in sequential 
relationships such as Sequential (SEQ) models (Ashcroft et al., 1974; 
Viswanathan et al., 2022), as well as endodormancy and ecodormancy 
in parallel relationships coupling the photoperiod effect, such as 
optimality-based (OPT) models (Meng et al., 2021b). However, other 
than temperature and photoperiod captured by the existing models, 
whether and how other environmental factors (e.g., precipitation (Fu 
et al., 2021; Yun et al., 2018), soil moisture (Fu et al., 2016), and solar 
radiation (Descals et al., 2022)) play a role in mediating spring 
phenology variability remains under-investigation. 

To examine the validity of the key mechanisms underlying these 
prognostic models and to assess their accuracy in modelling spring 
phenology with climate change, many experimental and observational 
studies have been conducted. Currently, most model evaluations were 
conducted at the organism level. These evaluations mostly relied on 
either long-term in-situ observations of certain plant individuals or 
species (Flynn and Wolkovich, 2018; Roberts et al., 2015), or using 
experimental approaches that investigate the same plant species under 
different environmental conditions (Hänninen et al., 2019; Liu et al., 
2011). Further, to explore the phenological sensitivity response to the 
continued global warming, scientists (Zhao et al., 2021; Zohner et al., 
2020a) used prognostic models for future projections under various 
climate change scenarios. Despite considerable progress being made at 
the organism/species level, whether similar mechanisms/models can be 

extended to the ecosystem level is unknown. An ecosystem-level 
assessment is critical, as the degree to which climate change will 
hamper the stability and persistence of ecosystem phenology remains 
largely an open question (Ovaskainen et al., 2013). Meanwhile, the 
forest ecosystem is made of tree individuals that often display large 
plasticity across both intra- and inter-specific levels in terms of their 
phenological sensitivity response to climate change (Fu et al., 2015; 
Peng et al., 2021; Tumajer et al., 2021). As a result, the ecosystem is 
more complex than any single individual organism/species, and the 
phenological knowledge we learnt from the organism level can not 
necessarily be directly transferable to the ecosystem level. 

The recent increasing availability of long-time series remote sensing 
observations from both satellite and ground PhenoCam networks offers 
a timely opportunity to evaluate these prognostic models and associated 
mechanisms underneath these models at the ecosystem level. Satellite 
remote sensing has demonstrated its effectiveness in monitoring land 
surface phenology (LSP) by offering data covering large spatial extents 
with high temporal resolution over decadal time series (Bolton et al., 
2020; Liu et al., 2015). In addition, relevant LSP products from satellites 
have also been generated and verified with free access, such as 
MCD12Q2 (Friedl et al., 2019) and VNP22Q2 (Zhang et al., 2020a) at a 
500 m resolution. PhenoCam sensors provide continuous daily images 
that aid accurate monitoring of both fine and ecosystem-scale plant 
phenology for each plant functional type (Richardson et al., 2018a; 
Seyednasrollah et al., 2019). The accumulation of these remote sensing 
data improves both spatial and temporal monitoring of plant phenology 
and provides us great opportunities to assess phenology models and 
their mechanisms at the ecosystem level. Lastly, because satellite data 
can provide LSP monitoring in a consistent, continuous manner across 
both large spatial and temporal extents, especially relative to the Phe-
noCam means, it thus makes the satellite-based LSP a more preferable, 
scalable option for prognostic model assessments. 

The large environmental gradients present in the temperate vege-
tated ecosystems of the Northern and Eastern United States provide a 
unique testbed to evaluate the application of state-of-the-art prognostic 
models in temperate areas, and to assess the effect of environmental 
variables, beyond chilling, forcing and photoperiod, on the modulation 
of spring phenology variability. Here we aim to answer the following 
questions: (1) To what extent can these prognostic models capture 
spring phenology in temperate ecosystems in the United States? (2) 
What environmental variable(s) dominantly regulate spring phenology 
but are not yet captured by current prognostic models? (3) Could revised 
prognostic models that include the missing environmental cues, as 
revealed in question (2), improve spring phenology modelling, and if so, 
what is the likely underlying mechanism? To address these questions, 
we selected all sites in the Northern and Eastern United States with 
paired measurements of satellite and PhenoCam phenology and envi-
ronmental datasets. We trained and evaluated the three prognostic 
models of GDD, SEQ, and OPT for modelling spring phenology. Next, we 
analysed the relationships between the model residuals and each of the 
three environmental variables (i.e., preseason shortwave radiation 
(SRpre), preseason precipitation (Ppre), and preseason soil moisture 
(SMpre)) that have been previously connected with spring phenology of 
temperate ecosystems (Piao et al., 2022; Tao et al., 2020a) to assess 
whether other environmental variables that are not represented in the 
current prognostic models also importantly regulate spring phenology 
variability. Once an environmental variable (such as solar radiation) 
was found to contribute the most to model residuals, we revised the two 
photoperiod-relevant models (SEQ, OPT) by replacing the daylength 
variable with solar radiation and investigated whether the revised 
models could improve the model performance. 

Y. Gu et al.                                                                                                                                                                                                                                       
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2. Study sites, materials, and methods 

2.1. Study sites 

In this study, we selected 108 sites that span large latitudinal and 
longitudinal ranges (Fig. 1). These sites encompass a range of plant 
functional types (PFTs), including deciduous broadleaf (DBF), grassland 
(GRA), and mixed forests (MXF). We selected these sites for three rea-
sons. First, they are all distributed in temperate regions which are 
defined by the boundary of the level I Ecoregion 5 Northern Forests and 
Ecoregion 8 Eastern Temperate Forests by the United States Environ-
mental Protection Agency (McMahon et al., 2001; Omernik, 1987). 
Second, the sites are mainly distributed in temperature-sensitive regions 
where are characterized as typical humid continental, or humid oceanic 
climate, and cover large environmental gradients, providing a unique 
dataset for comprehensive model evaluations over large landscapes. 
Notably, the distribution of annual precipitation is not uniform across 
these sites. The mean annual precipitation of 2001–2019 decreases from 
over 684 mm in the southern sites to about 17 mm in the northern sites, 
with most of the precipitation concentrated from May to August. While 
the mean annual temperature of 2001–2019 ranges from − 2.51 to 
24.25 ◦C, the maximum summer temperature exceeds 34.33 ◦C and the 
minimum winter temperature can reach − 38.77 ◦C. Third, all the 
selected sites have both local phenology records from PhenoCam and 
LSP from satellite observations, which makes the PhenoCam-satellite 
cross-validation feasible. 

2.2. Materials 

We utilized several remote sensing data resources, including near- 
surface PhenoCam observations, LSP metrics derived from the 

satellite-based MCD12Q2 product of Moderate Resolution Imaging 
Spectroradiometer (MODIS), as well as key environmental variables 
obtained either from remote sensing reanalysis data such as Daymet/ 
GLDAS or via the Google Earth Engine platform. 

2.2.1. Phenocam data and associated phenological metrics 
We used the latest PhenoCam Dataset v2.0, which was organized and 

processed by Seyednasrollah et al. (2019), for two reasons. First, digital 
repeat photography, along with the Green Chromatic Coordinate (GCC), 
provides an accurate and quantitative means for monitoring plant 
phenology (Brown et al., 2016; Caparros-Santiago et al., 2021), which 
can subsequently be used as “ground truth” to evaluate satellite-derived 
LSP. Second, the PhenoCam Dataset v2.0 employs a standardized 
approach to preprocess the data across all selected sites in a consistent 
way with provided GCC metric on a daily basis and official phenometrics 
to indicate key transition dates on an annual basis, which helps to reduce 
uncertainties associated with data preprocessing and phenology ex-
tractions from PhenoCams (Moon et al., 2021a). 

We first extracted the timing of leaf unfolding date (LUD) from the 
official PhenoCam v2.0 dataset (https://daac.ornl.gov/VEGETATION/ 
guides/PhenoCam_V2.html; Seyednasrollah et al., 2019) using the 
metric rising transition_25, which represents the transition date for the 
“greenness rising” stage that corresponds to 25.0% of the GCC amplitude 
of that stage. This metric has been widely used in previous studies to 
indicate LUD (Hufkens et al., 2018). As an independent evaluation on 
the reliability of this metric, we then derived our own phenometric to 
indicate LUD using a double logistic function algorithm proposed by 
(Elmore et al., 2012) with daily GCC time-series as input, and cross- 
compared our derived LUD records with the rising transition_25 
metric provided by PhenoCam v2.0. Our analysis in Fig. S1 demon-
strates that the two versions of LUD are overall very comparable, and 

Fig. 1. Locations of study sites with both PhenoCam and satellite measurements. These study sites are within the level I Ecoregion 5 Northern Forests (aqua area) and 
Ecoregion 8 Eastern Temperate Forests (hermosa pink area) by the United States Environmental Protection Agency, and include three plant functional types of 
deciduous broadleaf (DBF), grassland (GRA), and mixed forests (MXF). (For interpretation of the references to colour in this figure legend, the reader is referred to the 
web version of this article.) 
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both show strong agreement with MODIS-derived LUD (details below), 
suggesting that the MODIS product is reasonably accurate for spring 
phenology monitoring. 

2.2.2. MODIS-based LSP metrics 
We extracted the 500 m resolution phenometrics from Collection 6 

MODIS Land Cover Dynamics product MCD12Q2, covering the period 
from 2001 to 2019 (Friedl et al., 2019). This product was derived from 
the time-series of a 2-band Enhanced Vegetation Index (EVI2) calculated 
from MODIS Nadir Bidirectional Reflectance Distribution Function 
(BRDF)-Adjusted Reflectance (NBAR). The product includes six key 
phenological metrics (i.e., Greenup, MidGreenup, Maturity, Senescence, 
MidGreendown, and Dormancy), as well as quality layers for the derived 
phenological metrics (i.e., QA_Detailed). This product was used for three 
reasons. First, it has a much longer time series compared with other 
phenological products such as VNP22Q2 (Zhang et al., 2020a), which 
has a temporal extent from 2013 to the present. Second, it has global 
coverage with a spatial resolution of 500 m, offering us the possibility to 
examine the ecosystem-level spring phenology variability. Thirdly, this 
phenometrics product has been rigorously evaluated previously with 
demonstrated accurate validation results across diverse forest ecosys-
tems and over interannual timescales (Gonsamo and Chen, 2016; Peng 
et al., 2017; Xin et al., 2015; Fig. S1), thereby allowing for the com-
parison of phenological metrics across different sites and years. Notably, 
we used the satellite-derived Greenup (indicating the date when EVI2 
first crossed 15.0% of the segment EVI2 magnitude; Friedl et al., 2019) 
to indicate spring phenology, or LUD. In order to derive the high quality 
LUD from the MCD12Q2 product, we conducted further data quality 
assessment including two steps. First, we turned to the quality assess-
ment bands QA_Detailed provided by the MCD12Q2 product (0: best; 1: 
good; 2: fair; 3: poor), retained only records that belonged to the ‘best’ or 
‘good’ categories, and then used the average of all the remaining valid 
values of the neighboring 3 × 3 pixels for the targeted site-year (Moon 
et al., 2022). Second, for each site with around 20-years LUD records, we 
interactively calculated the associated mean and standard deviation 
(std), and then used mean ± 5*1std to filter outliers. After quality 
control, we evaluated the accuracy of satellite-derived LUD data with 
the corresponding transition_25 metric provided by PhenoCam v2.0 as 
the benchmark. Our analysis revealed that the transition_25 metric and 
MODIS-derived LUD exhibited high agreement (Fig. S1a; R2 = 0.70), 
indicating that MODIS-derived LUD is a reliable spring phenology 
metric that can be used for subsequent evaluation of prognostic models. 

2.2.3. Environmental data 
We extracted spatially and temporally consistent meteorological 

data from the Daymet dataset (https://daymet.ornl.gov; Thornton et al., 
2021). The dataset was generated by integrating ground observations 
with statistical modelling techniques for interpolation and extrapola-
tion, and has demonstrated high accuracy (Thornton et al., 2017; 
Thornton et al., 2016). The dataset has a daily time step and 1 km spatial 
resolution for the period from 1980 to the present. Specifically, we used 
the online Fixed Sites Subsets Tool: Product - DAYMET platform (htt 
ps://modis.ornl.gov/sites/?list=all&product=Daymet) to extract all 
key meteorological variables from 2001 to 2019 for each site, including 
daily maximum (Tmax) and minimum (Tmin) 2-m air temperature, daily 
total precipitation (P), shortwave radiation (SR), and daylength (DL). 
Since Daymet does not include soil moisture in its records, we turned to 
another source for extracting soil moisture data from the GLDAS-2.1 
dataset and converted the provided 3-h temporal resolution data into 
daily soil moisture, which we did on Google Earth Engine. The soil 
moisture data was subsequently resampled from the original 27.83 km 
resolution to a 1 km resolution to match with other environmental 
variables using the nearest neighbor approach. 

Notably, the Daymet dataset only provides the variables of daily Tmax 
and Tmin. We then followed the method of (Zohner et al., 2020c) and 
used a sign curve function (Eq. (1)) to simulate the hourly temperature 

(Thour) of the day (timeday) based on the provided Tmax and Tmin. With 
these simulated Thour values, we finally derived daily mean temperature 
(Tmean) using the mean of all 24 Thour values of that day. 

Thour =
(Tmax − Tmin)

2
× sin

( π
12

× timeday −
π
2

)
+
(Tmax + Tmin)

2
(1)  

2.3. Methods 

2.3.1. Prognostic models 
Three prognostic models were examined in this study, including 

GDD, SEQ, and OPT, illustrated below. 

2.3.1.1. The GDD model. GDD is a one-phase model that only considers 
the ecodormancy period (De Réaumur, 1735; Hänninen 2016). The 
theory underlying this model is that many chemical reaction rates are 
temperature-dependent when constructing the cellular structure of leaf 
tissues (Johnson and Thornley, 1985). As such, LUD is hypothesized and 
modelled to be driven by the effective accumulated forcing that shows a 
direct link with plants' growing temperature, and LUD only occurs on the 
date t1 when the sum of the daily forcing state GDD(t) (Eq. (2)) exceeds a 
critical value GDDC. 

GDD(t) =
∑t1

t0

max(Tt − Tbase, 0),when GDD(t) ≥ GDDC (2) 

Where Tt is the daily mean temperature, Tbase is the base temperature 
often set 5 ◦C (Wang et al., 2020b), t0 (set as January 1st of each calendar 
year (Wang et al., 2020b)) and t1 are the start date and end date to 
calculate GDD, respectively, and GDDC is a site/ecoregion-specific 
parameter that was calibrated from the time-series data. 

2.3.1.2. The Sequential model. SEQ was developed because the tem-
perature effect on spring phenology could be further divided into winter 
chilling and spring forcing (Cannell and Smith, 1983; Hänninen et al., 
2019; Körner and Basler, 2010), which are respectively connected to 
endodormancy and ecodormancy periods (Chuine et al., 2016). Mean-
while, daylength (or photoperiod), a proxy of accumulated sunlight over 
the full day and showing direct link with the plant's active growth rates 
once leaf onset occurs, is another important environmental trigger for 
spring phenology (Meng et al., 2021b; Way and Montgomery, 2015; 
Zohner et al., 2016). Based on these, SEQ was proposed, in which both 
dormancy periods (endodormancy and ecodormancy) were considered, 
respectively captured by chilling and forcing, along with subsequent 
active growth period, captured by daylength. 

In SEQ, the chilling response can be described using a triangular 
function of Eq. (3) (Zhang et al., 2018). Here, Tmin, Topt and Tmax indicate 
the minimal, optimal, and maximum chilling temperature, respectively, 
and Tt indicates the daily mean temperature on date t. To represent the 
forcing effect, we followed (Basler, 2016) and used Eqs. (4)–(6) for 
simulating the forcing effect. The general idea is to use the daylength 
DL(t) to approximate the forcing effect (Eq. (4)), and forcing only occurs 
when the accumulated chilling requirement has been met (i.e., beyond 
the critical value Creq) (Eqs. (5)–(6)). Finally, LUD occurs on the date t1 

when the sum of daily forcing state Sf(t) (Eq. (7)) exceeds a critical value 
Fcrit. 

Rc(t) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Tt − Tmin

Topt − Tmin
, Tmin ≤ Tt < Topt

Tt − Topt

Tmax − Topt
, Topt ≤ Tt < Tmax

0, if Tt < Tmin or Tt > Tmax

(3)  

Rf(t) =
(

DL(t)
24

)k

• max(Tt − Tbase, 0) (4)  
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k =

{
0, Sc(t) < Creq
1, Sc(t) ≥ Creq

(5)  

Sc(t) =
∑t1

t0

Rc(t) (6)  

Sf(t) =
∑t1

t0

Rf(t),when Sf(t) ≥ Fcrit (7) 

Where: Rc(t) and Rf(t) indicate the states of chilling and forcing on 
date t, and Sc(t) and Sf(t) indicate the accumulated chilling and forcing 
since t0 (set as January 1st of each year) to t1; Tbase (=5 ◦C), Tmin (= −

5 ◦C), Topt (=10 ◦C), and Tmax (=25 ◦C) are set as empirical constants 
following (Wang et al., 2020b); The model has two parameters to be 
fitted, including Creq and Fcrit. 

2.3.1.3. The optimality-based model. OPT was developed based on the 
eco-evolutionary optimality principle (Meng et al., 2021b), in which it 
hypothesizes spring phenology as an optimal strategy for plants to 
maximize photosynthetic carbon gain (e.g., approximated by photope-
riod and forcing) while minimizing frost damage risk (e.g., captured by 
chilling) (Fu et al., 2019; Körner, 2006; Richardson et al., 2018a). 
Similar to SEQ, OPT captures the same chilling effect (Eq. (8)) as Eq. (3). 
Different from Eq. (4) in SEQ, the forcing is characterized using a sig-
moid function (Eq. (9)) instead. In addition, the model also includes a 
new metric (Eq. (11)), the effectiveness of accumulated forcing that is 
constrained by both daylength DL(t) and chilling effects Rc(t). Finally, 
LUD occurs on the date t1 when the realized forcing for photosynthetic 
carbon benefit (i.e., Sf(t) in Eq. (12)) outweighs the potential negative 
impact associated with the frost damage risk (i.e., a*exp(b*Sc(t) ) in Eq. 
(12). 

Rc(t) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Tt − Tmin

Topt − Tmin
, Tmin ≤ Tt < Topt

Tt − Topt

Tmax − Topt
, Topt ≤ Tt < Tmax

0, if Tt < Tmin or Tt > Tmax

(8)  

Rf (t) =

⎧
⎪⎨

⎪⎩

0, Tt ≤ Tbase

28.4
1 + exp(3.4 − 0.185*Tt)

, Tt > Tbase
(9)  

Sc(t) =
∑t1

t0

Rc(t) (10)  

Rp(t) =
DL(t)

12
× ec×Rc(t) (11)  

Sf (t) =
∑t1

t0

Rf (t) ×Rp,when Sf(t) ≥ a*exp(b*Sc(t) ) where b < 0 (12) 

Where: Rc(t), Rf(t), and Rp(t) indicate the states of chilling, forcing, 
and realized forcing effect on date t, and Sc(t) and Sf(t) indicate the 
accumulated chilling and forcing since t0 (set as January 1st of each year) 
to t1; Tbase (=5 ◦C), Tmin (= − 5 ◦C), Topt (=10 ◦C), and Tmax (=25 ◦C) are 
set as the same empirical constants as SEQ, following (Wang et al., 
2020b); The model has three parameters to be fitted, i.e., a, b, and c. 

2.3.2. Model calibration and validation 
In this study, we trained and evaluated each of the three prognostic 

models (Section 2.3.1) using a 5-fold cross validation method (Yao et al., 
2018) on a site-by-site basis, with satellite-derived LUD (Section 2.2.2) 
and environmental variables (Section 2.2.3) as inputs. Each site had a 
data record spanning approximately 20 years from 2001 to 2019. Since 
the three models had different number of parameters, a commonly used 

approach for model selection is Akaike information criterion (AIC), the 
principle of which is to select the best-fit model that explains the greatest 
amount of variation using the fewest possible independent variables 
(Bozdogan, 1987). However, as (Stone, 1977) showed, minimizing the 
AIC is asymptotically equivalent to leave-one-out cross-validation. Thus, 
we used the 5-fold cross validation for cross-model comparisons, and 
recorded the corresponding R2 and RMSE as the model evaluation 
metrics. 

The 5-fold cross validation method used in this study involved three 
steps. First, we randomly divided the full dataset into calibration and 
independent validation subsets using a 5-fold cross-validation with 20 
repetitions. Second, for each repetition, we trained and evaluated the 
model for each of the three prognostic models. Third, we averaged the 
modelled LUD for each target site-year across all repetitions (n = 20) to 
obtain an ensemble predicted value. 

2.3.3. Assessing model residuals with other environmental variables 
To explore whether other environmental variables that are not yet 

represented by current prognostic models also regulate spring 
phenology variability, we first calculated the model residuals (i.e., 
satellite-derived LUD minus modelled LUD) and then explored their 
relationships with preseason precipitation (Ppre), preseason soil mois-
ture (SMpre), and preseason shortwave radiation (SRpre). Notably, for 
each environmental variable, the preseason was simply defined as the 
period with the highest correlation coefficient between the environ-
mental variable and LUD from 2001 to 2019 (Gao et al., 2019). The 
length of the preseason in months ranged from 1 to n and was defined as 
the time duration from LUD to its preceding ith month, subject to 0 <
LUD-i × 30 days<LUD and 0 < LUD-n × 30 days<30. Afterwards, we 
used the partial correlation analysis (Piao et al., 2022) to explore how 
much the model residuals depended on each of the three variables while 
controlling for the effects of the other two variables. 

2.3.4. Revised phenology models and model evaluation 
After identifying the most important environmental variable(s) 

responsible for the model residuals (as described in Section 2.3.3), we 
next explored how to integrate these missing environmental cues with 
current prognostic models to improve the model performance of spring 
phenology. Specifically, our subsequent analysis demonstrated that 
SRpre displayed the strongest and most significant partial correlation 
with the model residuals. We hypothesized that this is likely because 
solar radiation is a more effective variable than daylength DL(t) in 
indicating the potential photosynthetic carbon gain around leaf onset 
(Badeck et al., 2004; Yang et al., 2022). Consequently, we revised Rf (t)
and/or Rp(t) in the original models of SEQ (i.e., Eq. (4)) and OPT (i.e., 
Eq. (11)) by replacing the relevant DL(t) with SR(t) as shown in Eq. (13). 

SR(t) = k×(SRt − SR0) (13) 

Where: k is (site-specific) scalar constant value; SRt and SR0 

respectively indicate the shortwave radiation on date t and the constant 
threshold (applicable to all sites) of shortwave radiation to remove the 
magnitude difference that exerts a role in constraining Sf (t). 

With the revised models as described above, we evaluated their 
effectiveness and the soundness of the underlying hypothesis in two 
ways. First, we explored whether the revised models would generate 
significant improvements in their model performance (e.g., RMSE), 
especially relative to the default models that relied on daylength DL(t) as 
a predictor. Second, to ensure that the model performance improvement 
is not at the cost of increasing model residuals to other variables (in 
addition to daylength), we calculated the Pearson partial correlation to 
measure the degree of association between the model residual and all 
other environmental variables. 

Y. Gu et al.                                                                                                                                                                                                                                       



Remote Sensing of Environment 294 (2023) 113617

6

3. Results 

3.1. Evaluating the prognostic model performance for modelling spring 
phenology 

Our results show that all three prognostic models (i.e., GDD, SEQ, 
and OPT) reasonably characterized the temporal variation in spring 
phenology of each site over approximately 20 years (Fig. 2(a)&(e)). The 
OPT model had the highest performance (R2 = 0.53 ± 0.24 [1std]; 
RMSE = 8.04 ± 5.05 [1std] days across all sites), followed by SEQ (R2 =

0.27 ± 0.23, RMSE = 10.57 ± 7.77 days) and GDD (R2 = 0.29 ± 0.22, 
RMSE 10.84 ± 8.42 days). Additionally, we observed significant varia-
tion in modelling accuracy across all study sites, with RMSE ranging 
from 3.67 (10th percentile) to 14.90 (90th percentile) days for the OPT 
model, 4.29 to 18.23 days for SEQ, and 3.91 to 20.99 days for GDD. 

OPT also had the highest performance among all three models in 
modelling spring phenology, consistently across the three PFTs of DBF, 
GRA, and MXF (Fig. 2). The models performed the best in DBF, partic-
ularly in terms of RMSE (6.08 ± 3.15 days for OPT; 7.46 ± 3.62 days for 
SEQ; 7.34 ± 3.95 days for GDD), followed by MXF (7.66 ± 2.58 days for 
OPT; 8.45 ± 3.16 days for SEQ; 8.47 ± 3.60 days for GDD) and GRA 
(11.24 ± 6.29 days for OPT; 16.03 ± 10.19 days for SEQ; 16.99 ± 10.81 
days for GDD) (see Fig. 2). 

To further evaluate whether the observed relative order of these 
prognostic models is statistically significant, we calculated the accuracy 
difference between each pair of models for each site and performed a 
histogram analysis to assess the distribution of these differences across 
all sites (Fig. 3(a)&(e)). Our results indicate that over 77% of all sites 
showed an increase in R2 and a decrease in RMSE when using the OPT 
model relative to the SEQ model, with a mean increase of R2 = 0.25 and 
a mean reduction of RMSE = 2.52 days across all sites. The t-test results 
(Table S1) were consistent with the pair analysis, indicating that OPT 
significantly outperformed SEQ in modelling spring phenology. More-
over, >51% of all sites exhibited higher R2 and lower RMSE in SEQ 
compared to GDD, and the t-test results comparing these two models 
were significant (Table S1). However, the difference in performance 
between SEQ and GDD was marginal (Fig. 3). 

At the PFT level, the DBF and GRA sites demonstrated much better 
performance in the OPT model relative to the SEQ model, while the 
performance difference between the two models was smaller in MXF 
(Fig. 3 and Table S1). Additionally, the SEQ model showed comparable 
performance to the GDD model in DBF and GRA, but it performed much 
better in MXF (Fig. 3 and Table S1). 

3.2. Exploring the model residual and its association with key 
environmental variables 

Across all sites, our findings demonstrate that the model residuals 
consistently exhibited the strongest partial correlations with SRpre (i.e., 
the across-all-sites mean value of correlation coefficient r > 0.5), and 
moderate-to-little partial correlations with Ppre and SMpre (i.e., the ab-
solute value of mean r < 0.3) (Fig. 4 and Table S3). These observations 
hold true regardless of the model the residuals are derived from. 
Notably, the partial correlation of SRpre was significantly higher in GDD 
(r = 0.79 ± 0.21) and SEQ (r = 0.80 ± 0.19) compared to OPT (r = 0.60 
± 0.25) (Fig. 4a). 

At the PFT level, the model residuals also showed the strongest 
partial correlation with SRpre and moderate-to-little partial correlations 
with the other two environmental variables. Meanwhile, there were 
minor variations in the partial correlations of model residuals with 
environmental variables across different PFTs. Since the results across 
the three prognostic models were similar (Fig. 4), we used OPT as an 
example for illustration. As seen in Fig. 4, SRpre exhibited the highest 
partial correlation with model residuals among all three environmental 
variables. The partial correlation coefficient of SRpre was 0.60 ± 0.25 for 
all sites, 0.63 ± 0.20 for DBF, 0.55 ± 0.31 for GRA, and 0.60 ± 0.29 for 
MXF. The partial correlations of model residuals with Ppre had much 
higher variations across different PFTs, with Ppre exhibiting the partial 
correlation of − 0.04 ± 0.29 for all sites, − 0.06 ± 0.26 for DBF, − 0.03 ±
0.34 for GRA, and 0.04 ± 0.27 for MXF. As for SMpre, there was very 
little fluctuation in the partial correlation across PFTs, with SMpre 
holding a partial correlation of − 0.06 ± 0.28 for all sites, − 0.07 ± 0.27 
for DBF, − 0.09 ± 0.31 for GRA, and − 0.05 ± 0.30 for MXF. 

Fig. 2. The performance of the three prognostic models in modelling spring phenology, using the two accuracy metrics of RMSE (top panels) and R2 (bottom panels). 
Model performance was assessed at both across-all-sites (n = 108 sites; a, e) and at the PFT levels of deciduous broadleaf (DBF; n = 60 sites; b, f), grassland (GRA; n =
38 sites; c, g), and mixed forest (MXF; n = 10 sites; d, h). 
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3.3. Exploring the performance of revised models and their model residual 
associations with key environmental variables 

Our results in Fig. 5 showed that the revised models that included 
SRpre significantly improved the performance in modelling spring 
phenology compared to the default models (Fig. 6(a)&(e) and Table S2). 
Over 70% of all sites demonstrated an improvement in performance, 
with the improvement being consistent for both SEQ and OPT models. 
Across all sites, there was an average increase of 0.29 in SEQ and 0.09 in 
OPT for R2, and an average reduction of 2.82 days in SEQ and 1.41 days 
in OPT for RMSE (Fig. 5(a)&(e)). Across different PFTs, model accuracy 
displayed the highest improvement in MXF (SEQ: R2 increased by 0.28 
and RMSE reduction by 1.94 days; OPT: R2 increased by 0.24 and RMSE 
reduction by 2.78 days), followed by GRA (SEQ: R2 increased by 0.35 
and RMSE reduction by 2.30 days; OPT: R2 increased by 0.22 and RMSE 
reduction by 2.36 days), and the least in DBF (SEQ: R2 increased by 0.25 
and RMSE reduction by 1.68 days; OPT: R2 increased by 0.06 and RMSE 
reduction by 0.58 days) (Fig. 5(b)-(d), (f)-(h)). Furthermore, we found 
that the revised OPT model (OPT_rev) performed the best with an all- 
site-mean R2 = 0.62 ± 0.26 and RMSE = 6.63 ± 4.83 days, followed 
by the revised SEQ model (SEQ_rev) with an all-site-mean R2 = 0.56 ±
0.24 and RMSE = 7.75 ± 5.88 days. The default OPT model had an R2 of 
0.53 ± 0.24 and RMSE of 8.04 ± 5.05 days, followed by the default SEQ 
with an R2 of 0.27 ± 0.23 and RMSE of 10.57 ± 7.77 days, and GDD 
with an R2 of 0.29 ± 0.22 and RMSE = 10.84 ± 8.42 days. We also found 
that replacing daylength with solar radiation significantly improved 
model performance by reducing the RMSE for all PFTs. The improve-
ment of RMSE from the 25th percentile (Q1) to the 75th percentile (Q3) 
changed from 4.55 to 9.85 days in SEQ for DBF to 4.33–6.99 days in 
SEQ_rev, for GRA from 7.95 to 19.24 days to 6.23–14.45 days, and for 
MXF from 6.92 to 7.94 days to 4.97–7.28 days. Similarly, the 
improvement of RMSE in OPT from Q1 to Q3 changed from 3.85 to 7.03 

days in OPT to 3.66–6.20 days in OPT_rev for DBF, for GRA from 6.88 to 
15.71 days to 4.81–10.49 days, and for MXF from 5.91 to 7.78 days to 
3.11–6.46 days. These changes provided strong evidence for the sig-
nificant improvement in model performance with the inclusion of SR. 

The revised models significantly reduced the partial dependency of 
model residuals on SRpre, with little-to-moderate change in other envi-
ronmental variables (Fig. 7(b)-(d), Fig. S2 and Table S4–5). These ob-
servations were consistent despite pooling all the site data together or 
analyzing the results at the PFT level, and were also consistent across the 
two models of SEQ and OPT (Fig. 7). Since the results of the two revised 
models were similar, we used OPT_rev as an example for illustration. 
From Fig. 7a, the average partial correlation of model residuals with 
SRpre significantly reduced from 0.60 ± 0.25 in OPT to 0.50 ± 0.28 in 
OPT_rev across all sites (with the all-site-mean partial correlation 
reduced from 0.80 ± 0.19 in SEQ to 0.58 ± 0.25 in SEQ_rev), with little- 
to-moderate change in the average partial correlation for the other three 
environmental variables (i.e., r changed from − 0.04 to 0.00 for Ppre, 
from − 0.05 to 0.02 for SMpre; from 0.16 in OPT to 0.20 in OPT_rev for 
DLpre; Fig. 7). At the PFT level, SRpre remained the environmental var-
iable showing the highest partial correlation with model residuals, 
consistently across both SEQ_rev and OPT_rev. Meanwhile, moderate 
variations in partial correlation changes (between SEQ and SEQ_rev and 
between OPT and OPT_rev) remained among all three PFTs (Fig. 7, 
Fig. S2, and Table S4–5), and for most partial correlation changes, the 
revised model displayed a significant reduction or at least no significant 
increase in the model residual partial dependency on any of the four 
environmental variables. Finally, when evaluating the partial relation-
ship between SRpre and DLpre (conditioned by removing their indepen-
dent contribution to LUD) at both the across and within sites levels, we 
found that the across-all-sites partial correlation between SRpre and 
DLpre was 0.49, while most sites (n = 105 among all 108 sites) had a 
within-site partial correlation coefficient lower than 0.49 (Fig. 7e), 

Fig. 3. Histogram analysis on the paired model performance difference, using the two accuracy metrics of R2 (top panels) and RMSE (bottom panels). Model 
performance difference was assessed at both across-all-sites (a, e) and at the PFT levels of deciduous broadleaf (DBF; b, f), grassland (GRA; c, g), and mixed forest 
(MXF; d, h). Notably, OPT-GDD indicates the site specific model metric of OPT minus its corresponding GDD model metric; SEQ-GDD indicates the site specific model 
metric of SEQ minus its corresponding GDD model metric. 
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Fig. 4. The partial dependency of model residuals with three environmental variables of preseason solar radiation (SRpre; a), preseason precipitation (Ppre; b), and 
preseason soil moisture (SMpre; c). Notably, the model residuals were assessed using MODIS-derived LUD minus model-predicted LUD, including all the three models 
of GDD (orange), SEQ (light yellow), and OPT (light green); the partial correlation analysis was conducted on a site basis across an approximately 20 years duration 
and the results were respectively displayed at all-sites and each PFT levels. (For interpretation of the references to colour in this figure legend, the reader is referred to 
the web version of this article.) 

Fig. 5. The performance of the three prognostic models and two revised models (SEQ_rev and OPT_rev) in modelling spring phenology, using the two accuracy 
metrics of RMSE (top panels) and R2 (bottom panels). Model performance was assessed at both across-all-sites and at the PFT levels of deciduous broadleaf (DBF; b, f), 
grassland (GRA; c, g), and mixed forest (MXF; d, h). 
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demonstrating that the SRpre-DLpre relationship was more decoupled 
within each study site over the near 20-year time duration. 

4. Discussion 

4.1. The underappreciated importance of solar radiation in constraining 
spring phenology and potential underlying mechanisms 

Our study demonstrates that large model residuals associated with 
preseason solar radiation (SRpre) persist consistently across all three 
models (GDD, SEQ and OPT; Fig. 4a), implying that an important 
mechanism related with SRpre is missing in the current models. Solar 
radiation not only reflects daylength changes (Fig. 7e), but also affects 
complex early-season weather conditions (e.g., clouds and snow) that 
importantly influence plant ecosystem phenology. As such, we hypoth-
esized that SR could be a more effective variable than daylength for 
driving spring phenology. Our results support this hypothesis by 
showing that the revised models (with SR and Ta as inputs) perform 
better than the default models with DL and Ta as inputs (Figs. 5&6) 
without significantly affecting the partial dependency of model residuals 
on other environmental variables, including DLpre that was replaced 
(Fig. 7). This suggests that replacing DL with SR represents an effective 
way to improve the prognostic models for modelling spring phenology in 
these temperate ecosystems. 

There are two potential reasons underlying the above findings. First, 
solar radiation tends to be a more suitable variable than daylength in 
this regard. As illustrated earlier, spring phenology is connected to three 
critical phenophases: endodormancy, ecodormancy, and active growth 

period. Despite several studies suggesting that photoperiod (or day-
length) can be an important environmental trigger for ecodormancy and 
the active growth period (Caffarra et al., 2011; Flynn and Wolkovich, 
2018; Ma et al., 2021), daylength is mainly determined by site latitude 
and does not vary from year to year. Thus, if daylength is used in the 
prognostic models for inferring spring phenology variability within a 
site over years, it would risk in under-emphasizing the role of other 
environmental variables, like temperature (to constrain not only endo-
dormancy but also ecodormancy and the active growth period). Mean-
while, when interacting with other site properties (e.g., topography, 
long-lasting snow cover), solar radiation could create more complex 
microclimate variations (Hwang et al., 2011; Yun et al., 2018). For 
example, ambient light conditions, in addition to daylength, interact 
with temperature to prevent plants from leafing out prematurely and 
suffering from frost damage (Meng et al., 2021b). The better model 
performance with SR than DL thus implies either 1) SR is a better 
proximate environmental cue for spring phenology or 2) the SRpre is 
more dynamics than daylength on an interannual time-scale, and can be 
a more important control on spring phenology than daylength. 

The second reason is related with the subject of spring phenology 
control subject to fundamental eco-evolutionary optimality constraints 
(Fu et al., 2019), as shortwave radiation is a more direct variable than 
daylength in determining plant photosynthesis rates (Herrmann et al., 
2020) and the start of the photosynthetically active season (Zhang et al., 
2020b). As shown in Figs. 2 and 5, OPT performs the best among all the 
three prognostic models, suggesting that the theory underlying the OPT 
model would operate the best in mediating spring phenology variability. 
The fundamental theory of OPT lies in the hypothesis of spring 

Fig. 6. Histogram analysis on the paired model performance difference, using the two accuracy metrics of R2 (top panels) and RMSE (bottom panels). Model 
performance difference was assessed at both across-all-sites (a, e) and at the PFT levels of deciduous broadleaf (DBF; b, f), grassland (GRA; c, g), and mixed forest 
(MXF; d, h). Notably, SEQ_rev-SEQ indicates the site specific model metric of SEQ_rev minus its corresponding SEQ model metric; OPT_rev-OPT indicates the site 
specific model metric of OPT_rev minus its corresponding OPT model metric. 
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phenology as an optimal strategy for plants to minimize frost damage 
risk while maximizing photosynthetic carbon gain (Bennie et al., 2010; 
Estrella et al., 2017; Fu et al., 2019; Zohner et al., 2020b). In this trade- 
off between frost damage risk and photosynthetic carbon gain, photo-
synthetic carbon gain is more related with SR than DL due to its direct 
constraint on plant photosynthesis rates (Descals et al., 2022; Durand 
et al., 2021; Farquhar et al., 1980; Sun et al., 2019). 

Our finding that SR is a better variable than DL to constrain spring 
phenology has not been reported previously. This is largely because 

most of previous research was conducted at the PFT level or beyond, in 
which the latitude gradient dominates the spatial variation in both DLpre 
and SRpre, and it is not surprising to observe a tight correlation between 
them across large spatial extents (Fu et al., 2019; Meng et al., 2021b; 
Vitasse et al., 2011; Wang et al., 2021). However, in our study, we 
demonstrated for the first time that there was a decoupled relationship 
between DLpre and SRpre within a site across the decadal time duration 
(Fig. 7e). Such a contrast of the DLpre-SRpre relationship between within- 
site and across-site analyses further raises a concern that the 

Fig. 7. The partial dependency of model residuals with four environmental variables of preseason solar radiation (SRpre; a), preseason precipitation (Ppre; b), 
preseason soil moisture (SMpre; c) and preseason daylength (DLpre; d). The partial correlation between DLpre and SRpre conditioned by removing their independent 
contribution to LUD at the two levels of across-all-sites and within-each-site was also displayed (e). Notably, in panels a-d, the model residuals were assessed using 
MODIS-derived LUD minus model-predicted LUD, including all the three models of GDD, SEQ, and OPT and two revised models of SEQ_rev and OPT_rev; the partial 
correlation analysis was conducted on a site basis across an approximately 20 years duration and the results were respectively displayed at all-sites and each PFT 
levels; in panel e, the dash blue line indicated the across-all-site result while the histogram summarized the within-site statistics across all 108 sites. 
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conventional PFT level (or beyond) prognostic models might risk in 
mixing the temporal and spatial variability of spring phenology's 
response to climate change in temperate regions, as the fundamental 
mechanism related with SRpre in mediating within-site temporal 
phenology variability is not well captured. Meanwhile, it is unrealistic in 
the real world to calibrate the spring phenology model on a site level as 
conducted in this study (which might risk in overfitting and can be 
sensitive to phenological outliers). Thus, future attempts to assess a 
more appropriate mid-stage (between site and PFT levels) for calibrating 
and using these prognostic models would be greatly needed, but this is 
beyond the scope of this paper. 

4.2. The good capability of current prognostic models for characterizing 
the spring phenology variability over time at the ecosystem level 

Although prognostic models for spring phenology modelling have 
been proposed and evaluated on the organism/species level (Caffarra 
et al., 2011; Dai et al., 2019; Meng et al., 2021b; Way and Montgomery, 
2015), and some have also been evaluated on the ecosystem level (Fisher 
et al., 2007; Migliavacca et al., 2011; Post et al., 2022; Wang et al., 
2020a), a comprehensive assessment of ecosystem-level phenology 
mechanisms and modelling across large spatial coverage and over a 
decadal time duration remains lacking. In this study, we leveraged the 
MODIS satellite-derived spring phenology metric and evaluated these 
models on a site-by-site basis over nearly 20 years across 108 temperate 
sites in Northern and Eastern United States. Our results demonstrate that 
these models reasonably characterized the temporal variability in 
ecosystem-level spring phenology (Fig. 2), demonstrating the good 
capability of extending the current prognostic modelling framework 
from the organisms/species level to the ecosystem level. 

Among all three models examined in this study, we found that OPT 
performed the best, followed by SEQ and GDD (Figs. 2 & 3; Table S1). 
This finding is consistent with recent studies that demonstrate that OPT 
is more accurate, and potentially more mechanistic, for modelling spring 
phenology in temperate ecosystems (Kim et al., 2022; Meng, 2021; Meng 
et al., 2021a; Meng et al., 2021b). Because the OPT model considers the 
parallel relationship between endodormancy and ecodormancy periods, 
which differs from SEQ (which uses the sequential relationship) and 
GDD (which relies only on the single accumulated forcing threshold 
criteria), our finding suggests that OPT better describes the dependent 
relationship between how plants endure an unfavourable cold envi-
ronment (or endodormancy, captured by the chilling effect) and how the 
ambient environment triggers the transition from the encodormancy 
period to the active growth period (captured by the interactive effect 
between forcing and photoperiod (Fig. 2) or solar radiation (Fig. 5)). 

Furthermore, consistent with previous studies (Fu et al., 2021; 
Marchand et al., 2020; Moon et al., 2021b), we observed large variations 
in model performance across different PFTs, with the models performing 
best in DBF, followed by MXF and GRA (Fig. 2). This is likely because 
DBF displays higher sensitivity to the heat requirement for release from 
the dormancy period than other PFTs, and thus is better characterized by 
these models (Descals et al., 2022; Richardson et al., 2013). Conversely, 
for MXF and GRA, environmental variables other than temperature, 
such as precipitation (Yun et al., 2018) or topography (Hwang et al., 
2011), might also constrain their spring phenology variability (Cleland 
et al., 2006; Donnelly et al., 2017; Felton et al., 2020), resulting in 
relatively poorer model performance. Additionally, the more complex 
plant compositions in MXF and GRA (especially at a pixel resolution of 
500 m MODIS) than in DBF, and the differential phenological sensitivity 
response to ambient environment fluctuations among these different 
compositions (Donnelly et al., 2017; Richardson et al., 2018b), could 
also worsen the model performance if the effect of complex composi-
tions is not explicitly considered. Future research efforts with higher- 
resolution LSP data records (e.g., Moon et al., 2022; Zhao et al., 2022) 
and characterizations of forest composition (e.g., Zanaga et al., 2022) 
could be essential to improve the elucidation of the underlying spring 

phenology mechanisms across different PFTs. 
Finally, we observed consistent model performance improvements 

across all three PFTs (Fig. 5), providing compelling evidence that inte-
grating the process of solar radiation is necessary for improving spring 
phenology modelling for all the studied PFTs. Further analysis also 
shows that these model performance improvements are significant 
relative to their original performance (Fig. 6) and have a magnitude of 
improvement significantly higher than the inherent model uncertainties 
associated with model constants (Fig. S3), suggesting that these model 
improvements are not marginal. Additionally, all sets of model param-
eters (Table S6–10) generated by this study and the potential extension 
of this research to broader scales using long-time series satellite LSP data 
could provide necessary parameterizations to improve the use of these 
prognostic models for simulating spring phenology response to longer- 
term climate change and variability. 

4.3. Uncertainties and future directions 

There are at least four sources of uncertainty in the data analysis that 
may affect our findings. First, to evaluate the prognostic models' per-
formance, we used the satellite-derived spring phenology metric 
generated by Friedl et al. (2019) as the benchmark. Although this 
phenology product has been rigorously evaluated (Friedl et al., 2019) 
and demonstrated good accuracy when comparing with local phenocam 
observations (Fig. S1), there remain other sources of uncertainty in the 
retrieved spring phenology metric, such as coarse spatial resolutions (i. 
e., mixed pixel effect associated with different plant species composi-
tions or PFTs), noise caused by residual atmospheric effects of clouds, 
hazes, and aerosols, and snow contaminations, especially at high lati-
tudes (Ma et al., 2022). Meanwhile, the mixture of multiple individuals 
in the ecosystem also brings uncertainty, as biases have been found 
between the algorithms-derived leaf unfolding date and actual pheno-
stages such as budburst or leafout from finer scale observational dataset 
such as PEP725, US-NPN, and other in-situ data (Moon et al., 2021a; 
Richardson et al., 2018c). To address this, future improvements of 
phenological retrieval algorithms and more rigorous data quality control 
procedures would still be needed (Ma et al., 2022), especially when 
extending our current research conducted on hundreds of sites in the 
United States to an even larger area around the world using satellite 
remote sensing. Second, we used approximately 20-year phenological 
records from the MODIS satellite to examine the capability of existing 
prognostic models. However, the range of near 20 years phenological 
variability varied considerably from site to site. Since a higher range of 
phenological variability across the decadal timescale often means a 
higher confidence in calibrating the prognostic models and subsequent 
mechanistic explorations, sites with smaller ranges may pose a risk in 
calibrating and evaluating the prognostic models. Future phenology 
products with longer temporal duration and improved product accuracy 
remain greatly needed to evaluate the application of these prognostic 
models. Third, there remains a considerable residual partial dependency 
of the model on SRpre (Fig. 7), suggesting that the impact of SRpre on 
spring phenology (e.g., via photosynthetic carbon gain) could be more 
complex than the way it is currently modelled (i.e., using a linear model; 
Eqns. 4 and 11). SR can directly and indirectly affect plant photosyn-
thesis rates: 1) the direct effect is primarily through the light- 
photosynthesis relationship, whereby plant photosynthesis rate in-
creases nearly linearly with SR in the early season with low light con-
ditions (Jumrani and Bhatia, 2020); 2) the indirect effect is because the 
early season temperature rise associated with the SR increase could also 
affect plant photosynthesis rate by mediating the maximum carboxyla-
tion rate (or Vcmax) following the Arrhenius equation in an exponential 
way (Medlyn et al., 2002). Therefore, the representation of solar radi-
ation constraints on plant photosynthetic carbon gain in current prog-
nostic models is imprecise and could be improved. Fundamental theories 
and models in the plant ecophysiology field, such as the Farquhar-type 
photosynthesis model (Farquhar et al., 1980), could be used to 
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improve the future prognostic model development (Xu et al., 2017). 
Meanwhile, recent advancements in observational technology, such as 
the increasing availability of ground and satellite-based solar radiation 
monitoring and the increasing maturity of process model-data fusion 
techniques, have made accurate and high-temporal-resolution solar ra-
diation data increasingly available at the regional (e.g., NSRDB, ESRA; 
Rigollier et al., 2000; Sengupta et al., 2018) and global (e.g., ERA5-Land; 
Muñoz-Sabater et al., 2021) scales. These data can facilitate the use of 
revised phenology models (including solar radiation as model input), as 
suggested in this study. Nevertheless, the incorporation of solar radia-
tion data into models may introduce data uncertainty, and future studies 
are still needed to assess its potential impact on spring phenology 
modelling on a large scale. Fourth, although our sensitivity analysis 
(Fig. S3) suggests that our modelling results are not sensitive to the 
predefined model constants, such as Tmin, Tmax, and Tbase, we still 
recommend that these model constants should still be used with caution, 
especially when applying these prognostic models to more diverse 
terrestrial ecosystems. 

Our work also identified at least two important directions for future 
phenology-related studies. First, in our study of temperate ecosystems in 
the United States, we found that SR is a key missing environmental 
variable that is under-represented in current prognostic models. This 
finding is generated because the spring phenology of these study sites is 
known to be limited by temperature (a process of which is well captured 
by current models), and thus we can focus on examining which of SR and 
DL is more related with plants' potential photosynthetic carbon gain-
—another process to constrain the start of spring phenology and sub-
sequent active growth period. However, when moving beyond these 
temperate forest sites, other environmental variables, such as rainfall (Li 
et al., 2020; Ren and Peichl, 2021), soil moisture (Huang et al., 2019; 
Tao et al., 2020b), snow (Yun et al., 2018), and elevation (Vitasse et al., 
2018), might also exert roles in constraining spring phenology. There-
fore, a critical next step is to expand the analysis to an even larger area 
using remote sensing data to identify regions where spring phenology is 
constrained by temperature, water, or other factors, and investigate 
whether there is a generalizable modelling framework to advance spring 
phenology modelling across diverse terrestrial ecosystems. Second, 
since spring phenology has been shown to be tightly associated with 
many important ecosystem processes, such as spring carbon sequestra-
tion (Delpierre et al., 2016; Galvagno et al., 2013), land surface energy 
balance (Moon et al., 2021b), early growing season water use (Wu et al., 
2022), and many others (Mäkiranta et al., 2018), our attempt to improve 
spring phenology modelling would inspire subsequent integration with 
more complex terrestrial biosphere models. This would allow us to 
examine how these improvements in spring phenology modelling might 
help better assess terrestrial ecosystems response to climate change. 

5. Conclusion 

In this study, we explored how well three prognostic models char-
acterized the decadal spring phenology variability in the studied 
temperate ecosystems, among which OPT performed the best, followed 
by SEQ and GDD (Figs. 2-3). The model residuals of all three model 
showed a very high partial correlation with preseason shortwave radi-
ation, suggesting shortwave radiation importantly regulated the spring 
phenology of temperate ecosystems, which had not been involved in 
current prognostic models (Fig. 4a). To improve the performance of 
current models, we replaced the daylength with shortwave radiation 
and found that the revised models performed significantly better, with 
an RMSE reduction by 22.08% (Figs. 5-6). Meanwhile, this improvement 
had little-to-no effect on the partial dependency of these model residuals 
on other environmental variables (Fig. 7a-d). Collectively, our study 
demonstrates that temperature coupling solar radiation effect is better 
tightly associated with the spring phenology biophysical process under 
natural scenarios, which provides insights to improve many other 
phenology-related ecosystem processes in terrestrial biospheres models 

and further benefits the accurate predictions of temperate ecosystems' 
response to climate change. 
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input, controls the interannual variability of wood growth in a temperate oak forest. 
New Phytol. 210, 459–470. 

Descals, A., Verger, A., Yin, G., Filella, I., Fu, Y.H., Piao, S., Janssens, I.A., Peñuelas, J., 
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Lange, H., Matthysen, E., Peñuelas, J., Zuccarini, P., Campioli, M., 2020. Inter- 
individual variability in spring phenology of temperate deciduous trees depends on 
species, tree size and previous year autumn phenology. Agric. For. Meteorol. 290, 
108031. 

McMahon, G., Gregonis, S.M., Waltman, S.W., Omernik, J.M., Thorson, T.D., Freeouf, J. 
A., Rorick, A.H., Keys, J.E., 2001. Developing a spatial framework of common 
ecological regions for the conterminous United States. Environ. Manag. 28, 293–316. 

Medlyn, B.E., Dreyer, E., Ellsworth, D., Forstreuter, M., Harley, P.C., Kirschbaum, M.U.F., 
Le Roux, X., Montpied, P., Strassemeyer, J., Walcroft, A., Wang, K., Loustau, D., 
2002. Temperature response of parameters of a biochemically based model of 
photosynthesis. II. A review of experimental data. Plant Cell Environ. 25, 
1167–1179. 

Meng, L., 2021. Green with phenology. Science 374, 1065–1066. 
Meng, L., Mao, J., Ricciuto, D.M., Shi, X., Richardson, A.D., Hanson, P.J., Warren, J.M., 
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